Анализ крови на кариотип

Содержание:

Обследование на повторы в гене FMR1 (синдром хрупкой Х-хромосомы)

При низком овариальном резерве (АМГ менее 1 нг/мл) у женщин до 35 лет и преждевременной недостаточности яичников (прекращение месячных до 40 лет), женщину обычно обследуют на повторы в гене FMR1 (это синдром ломкой (хрупкой) Х-хромосомы). Назвали этот синдром так, потому что при специальном окрашивании Х-хромосома выглядит нетипично, как будто один кусок от неё отделился, хотя физически она цельная.

При выявлении повторов в данном гене рекомендовано проведение ПГТ-А для переноса эмбрионов женского пола (у мальчиков почти в 3 раза выше риск развития синдрома Мартина-Белл, проявляющийся умственной отсталостью).

Кариотипирование плода

Кариотипирование плода проводится при подозрении на врожденную патологию. При синдроме Дауна, например, имеется дополнительная 21 хромосома, поэтому кариотип девочки будет описан как 47,ХХ 21 +, а мальчика 47, ХY 21+. Синдром Кляйнфельтера встречается у 1 из 500 новорожденных мальчиков, при этом заболевании увеличивается количество Х хромосом — кариотип 47,ХХY, а при большем увеличении количества Х-хромосом 48,ХХХY и 49,ХХХХY у ребенка будут нарушения интеллекта, поэтому ставится вопрос о прерывании беременности.  Кариотип при синдроме Шерешевского – Тернера будет описан так: 45X0 – утрата одной Х хромосомы.
В обязательном порядке проводится предимплантационная генетическая диагностика при ЭКО, которая позволяет обнаружить серьезные отклонения в количестве хромосом. 

Самые важные и интересные новости о лечении бесплодия и ЭКО теперь и в нашем Telegram-канале @probirka_forum Присоединяйтесь!

Кариотипирование абортивного материала при неразвивающейся (замершей) беременности

Одной из наиболее частых причин неразвивающихся (замерших) беременностей и выкидышей на ранних сроках беременности является аномалия кариотипа у плода (изменение количества или структуры хромосом).

Обнаружение хромосомной аномалии в материале позволяет не только определить причину остановки развития беременности, но и спланировать будущую беременность.

Методы выявления хромосомных аномалий:

  • стандартное цитогенетическое исследование (кариотипирование) – анализ числа и структуры хромосом на стадии деления клетки;
  • флуоресцентная in situ гибридизация (FISH) – анализ числа хромосом в ядре неделящейся клетки.

Анализ хромосомных и геномных мутаций в абортном материале при неразвивающейся беременности (выбор метода кариотипирование или FISH, определяется наличием делящихся клеток в материале) — стоимость 4600 руб. (код услуги 22.008).

Порядок сбора и доставки материала

Биологическим материалом для исследования является ворсинчатый хорион, полученный оперативным или медикаментозным способом. Материал необходимо поместить в контейнер с физиологическим раствором и доставить в лабораторию (оптимально в течение 1-3 часов, в исключительных случаях допустимо хранение материала в течение 20 часов при температуре не ниже +5°С — условия холодильника). Успешность проведения анализа зависит от времени остановки развития эмбриона, условий хранения и транспортировки материала в лабораторию.

Вы можете доставить материал в лабораторию с 10 до 17 часов по рабочим дням. Доставку материала в другое время необходимо согласовать со специалистами лаборатории по телефонам +7(812)328-98-09, +7(812)328-02-62.

Если материал находится в нашем Институте или Вы передаете материал с курьером, то можно заполнить необходимые документы и оплатить услугуДИСТАНЦИОННО

Алгоритм предоставления услуги

Скачайте и заполните (в электронном виде или от руки) ЗАЯВЛЕНИЕ (или в форматах DOC, RTF, ODT)

В этом документе в таблице выберите услугу, поставив любую отметку (галочку или крестик) в последнем столбике.Если Вы затрудняетесь с выбором услуги – позвоните нам по телефону +7(812)328-9809, +7(921)335-2960, наш специалист ответит на все вопросы.
Скачайте и заполните (в электронном виде или от руки) СОГЛАСИЕ на обработку персональных данных (или в форматах DOC, RTF, ODT).
Для оплаты услуг воспользуйтесь БАНКОВСКИМИ РЕКВИЗИТАМИ.
Обратите внимание! В назначении платежа необходимо указать: Оплата за мед. услуги, затем Код услуги (код Вы можете посмотреть в заявлении, в третьем столбце), затем ФИО (пациента).

Копии ЗАЯВЛЕНИЯ, СОГЛАСИЯ на обработку персональных данных и ДОКУМЕНТА ОБ ОПЛАТЕ отправьте на электронный адрес distant@ott.ru (по вопросам отправки и получения документов Вы можете обратиться по телефону +7(812)328-98-48, Дейкун Татьяна Богдановна).

Что берут на анализ?

Ядро и хромосомы есть во всех клетках организма, кроме некоторых узкоспециализированных, таких как эритроциты. Для кариотипирования теоретически можно использовать любые ткани человека. Проще всего взять кровь из вены.

У беременных женщин на анализ берут околоплодные воды (процедура называется амниоцентезом, её проводят при помощи специальной иглы) или фрагмент плаценты.
Иногда исследуют образец красного костного мозга.

Полученные клетки помещают на специальную питательную среду и выращивают в лаборатории. Затем их обрабатывают веществами, которые окрашивают хромосомы, и изучают под микроскопом.

Преимущества сдачи спермы в «Линии жизни»

«Линия жизни» — крупный репродуктивный центр, один из ведущих в России. Мы создаем комфортные условия как для пациентов, так и для доноров биоматериала.

  1. Обследование кандидатов в доноры бесплатное. Исследования, включая спермограмму, проводят высококвалифицированные специалисты в великолепно оснащенной лаборатории.
  2. Мы гарантируем анонимность доноров спермы.
  3. У нас много пациентов, поэтому нам всегда нужны доноры.
  4. Наша специальная «мужская комната» обустроена так, чтобы у мужчины не возникало дискомфорта или затруднений при получении эякулята.
  5. Достойная оплата для доноров.    

Номенклатура


Рис.3. Кариотип 46,XY,t(1;3)(p21;q21), del(9)(q22): показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (потеря участка) 9-й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски) так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромосом и позволяющая подробно описывать отдельные хромосомы и их участки. Запись имеет следующий формат:

.

длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначаются дополнительными символами.

Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2.

Для кариотипа используется запись в системе ISCN 1995, имеющая следующий формат:

, , .

Для обозначения половых хромосом у различных видов используются различные символы (буквы), зависящие от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца — XY. У птиц же самки гетерогаметны, а самцы гомогаметны, то есть запись половых хромосом самки ZW, самца — ZZ.

В качестве примера можно привести следующие кариотипы:

  • нормальный (видовой) кариотип домашнего кота:
    38, XY
  • индивидуальный кариотип лошади с «лишней» X-хромосомой (трисомия по X-хромосоме):
    65, XXX
  • индивидуальный кариотип домашней свиньи с делецией (потерей участка) длинного плеча (q) 10-й хромосомы:
    38, XX, 10q-
  • индивидуальный кариотип мужчины с транслокацией 21-х участков короткого (p) и длинного плеч (q) 1-й и 3-й хромосом и делецией 22-го участка длинного плеча (q) 9-й хромосомы (приведён на Рис. 3):
    46, XY, t(1;3)(p21;q21), del(9)(q22)

Поскольку нормальные кариотипы являются видоспецифичными, то разрабатываются и поддерживаются стандартные описания кариотипов различных видов животных и растений, в первую очередь домашних и лабораторных животных и растений.

История термина

Л. Н. Делоне предложил термин «кариотип» в своей работе «Сравнительно-кариологическое исследование видов Muscari Mill. и Bellevalia Lapeyr», статья была опубликована в 1922 году в «Вестнике Тифлисского ботанического сада». Л. Н. Делоне определил кариотип как совокупность хромосом в наборе, определяемая их числом, величиной и формой. Л. Н. Делоне предположил, что все виды рода имеют одинаковый набор хромосом («кариотип»), разные роды, по мнению Делоне, обязательно различаются кариотипически. Г. А. Левитский на основании собственных исследований показал, что это не соответствует действительности, и в своей книге «Материальные основы наследственности» развил и уточнил термин «кариотип». В разработке термина участвовали также Сирил Дин Дарлингтон и Майкл Дж. Д. Уайт.

Какие патологии можно выявить при помощи хромосомного анализа?

Некоторые примеры хромосомных нарушений, которые можно обнаружить при помощи кариотипирования:

Синдром Дауна. Вместо 46, больной имеет набор из 47-ми хромосом, за счет лишней двадцать первой хромосомы. У таких людей характерные черты лица, они страдают различными расстройствами, которые могут быть выражены в разной степени.

Синдром Клайнфельтера. Нарушение, при котором у мальчика имеется одна (или больше) лишняя «женская» X-хромосома. Самый распространенный симптом, который может стать поводом для хромосомного анализа — бесплодие.

Филадельфийская хромосома — перенос части девятой хромосомы на двадцать первую. Встречается в 85% случаев при хроническом миелоидном лейкозе.

Трисомия 18 — лишняя восемнадцатая хромосома. Проявляется разными врожденными дефектами, у девочек встречается примерно в 3 раза чаще, чем у мальчиков.

Синдром Шерешевского-Тернера. Возникает у девочек, если отсутствует одна из X-хромосом. Проявляется бесплодием, низким ростом, слабо выраженными вторичными половыми признаками. Месячные скудные или отсутствуют. Иногда диагноз устанавливают только во взрослом возрасте, когда женщина приходит к врачу с жалобами на отсутствие месячных или бесплодие.

Аномальные кариотипы и хромосомные болезни человека

Основная статья: Хромосомные болезни

Нормальные кариотипы человека — 46,XX (женский) и 46,XY (мужской). Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводит к самопроизвольным абортам на ранних стадиях беременности. Доля выкидышей вследствие нарушений кариотипа в течение первого триместра беременности составляет 50-60 %. 50-60 % от этих нарушений — различные трисомии, 20-25 % — полиплоидия и 15-25 % — моносомия по X- хромосоме, однако достаточно большое число плодов (~ 0,5 %) с аномальными кариотипами донашивается до окончания беременности.

Нарушения кариотипа могут также возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом.

Некоторые болезни человека, вызванные аномалиями кариотипов,
Кариотипы Болезнь Комментарий
47,XXY; 48,XXXY; Синдром Клайнфельтера Полисомия по X-хромосоме у мужчин
45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq) Синдром Шерешевского — Тёрнера Моносомия по X хромосоме, в том числе и мозаицизм
47,ХХX; 48,ХХХХ; 49,ХХХХХ Полисомии по X хромосоме Наиболее часто — трисомия X
47,ХХ, 21+; 47,ХY, 21+ Синдром Дауна Трисомия по 21-й хромосоме
47,ХХ, 18+; 47,ХY, 18+ Синдром Эдвардса Трисомия по 18-й хромосоме
47,ХХ, 13+; 47,ХY, 13+ Синдром Патау Трисомия по 13-й хромосоме
46,XX, 5р- Синдром кошачьего крика Делеция короткого плеча 5-й хромосомы
46 XX или ХУ, del 15q11-q13 Синдром Прадера-Вилли Делеция в длинном плече 15-й хромосомы

Описание

Анализ кариотипа с абберациями — исследование количества хромосом и их структуры в большинстве клеток организма. Является расширенным вариантом кариотипирования. В ходе исследования могут быть выявлены изменения генома, которые возникли вследствие влияния факторов внешней среды: излучения, радиации.Определение кариотипа
Каждый организм имеет определённый набор хромосом. Кариотип — это множество признаков полного набора хромосом соматических клеток организма — их количество, размер, форма, особенности строения. У человека 23 пары хромосомы, из них 22 пары являются аутосомными и одна пара половыми. Аутосомные хромосомы имеют одинаковое строение у женщин и мужчин, половые хромосомы детерминируют пол человека, поэтому отличны у мужчин и у женщин. Женщины являются носительницами двух X хромосом (кариотип 46-ХХ), мужчинам присущи: одна Х хромосома и одна Y хромосома (кариотип 46-ХY). Метод исследования
Анализ кариотипа проводят методом световой микроскопии с целью диагностики патологии хромосом во всех клетках. Материалом для исследования служит венозная кровь. В ходе анализа оцениваются количество, размер, форма, особенности строения хромосом лимфоцитов крови. Принцип метода
Вне процесса деления клетки хромосомы расположены в ядре в виде «распакованной» молекулы ДНК, они трудно доступны для просмотра в световом микроскопе. Для того чтобы хромосомы можно было визуализировать, необходимо чтобы клетка вошла в определённую фазу деления. Благодаря использованию специальных методов окраски, G-окраски, выявляют неоднородные участки хромосом. Анализ проводят в 100 клетках — определяют кариотип и подсчитывают процент аномальных метафаз. Расположение хромосом, видимое в микроскопе, фотографируют и из нескольких фотографий собирают систематизированный кариотип — нумерованный набор хромосомных пар гомологичных хромосом. Изображения хромосом при этом ориентируют вертикально, короткими плечами вверх, а их нумерацию производят в порядке убывания размеров. Пару половых хромосом помещают в самом конце изображения набора хромосом. Кому рекомендовано исследование кариотипа с абберациями
Исследование проводят у супругов при бесплодии или привычном невынашивании беременности. Выявление хромосомных перестроек в этом случае позволяет установить причину бесплодия и прогнозировать риск рождения в данной семье детей с хромосомной патологией. 
Показания:

  • бесплодие в браке;
  • первичная аменорея;
  • спонтанные выкидыши (два и более);
  • неразвивающиеся беременности;
  • случаи мёртворождения в семье;
  • случаи ранней детской смертности в семье (до 1 года);
  • врождённые пороки развития (особенно множественные пороки) у ребёнка;
  • задержка умственного и/или физического развития ребёнка;
  • нарушение половой дифференцировки у новорождённого;
  • подозрение на хромосомную болезнь или наследственный синдром по клинической симптоматике (например: изменение формы и размеров черепа, аномалии глаз, носа, пальцев, внешних гениталий и пр.);
  • случаи рождения детей с умственной отсталостью, хромосомной аномалией или врождёнными пороками развития в родословной;
  • обследование перед проведением вспомогательных репродуктивных технологий (ЭКО, ИКСИ и др.).

Подготовка
Кровь необходимо сдавать в состоянии сытости, не рекомендуется сдавать данный тест натощак. Следует воздержаться от приёма антибиотиков за месяц до исследования на кариотип. 
Не рекомендуется сдавать кровь единовременно с тестами, имеющие строгую подготовку к сдаче биоматериала (биохимический анализ крови, клинический анализ крови, часть тестов на инфекции и т.д.). Интерпретация результатовВарианты заключений:

  • 46, XY — нормальный мужской; 
  • 46, XX — нормальный женский.

Другие варианты — записывают в форме согласно международной цитогенетической номенклатуре.
В случае получения иного результата, консультация врача-генетика обязательна.Нарушения кариотипа и мозаицизм
Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма. Если это происходит в половых клетках будущих родителей в процессе гаметогенеза, то кариотип зиготы, образовавшейся при слиянии родительских клеток, оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма окажутся с одинаково аномальным кариотипом. Однако, нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы. Развившейся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с разными кариотипами. Такое многообразие кариотипов во всём организме или только в некоторых его органах называют мозаицизмом.
  

Половой хроматин в судебно-медицинском отношении

Исследование П. х. в суд.-мед. практике производится с целью установления половой принадлежности следов крови, слюны и других биол, жидкостей, вырванных волос, следов-отпечатков клеток тканей и органов, кусочков тканей, которые могут быть обнаружены на месте происшествия, на различных предметах, одежде, теле потерпевшего и подозреваемого в совершении преступления, на орудиях травмы, на транспортных средствах, а также при обнаружении обгоревших трупов или частей расчлененных трупов. Реже П. х. исследуют с целью суд.-мед. установления генетического пола у лиц с аномалиями полового развития, используя общепринятые методики.

Для приготовления препаратов из следов крови (см.) и слюны (см.) кусочки предмета-носителя помещают в пробирку и заливают 0,5—40% (следы крови) или 5—10% (следы слюны) уксусной к-той. Экстрагируют при комнатной температуре в течение нескольких часов и, удалив кусочки предмета-носителя, центрифугируют. Осадок переносят на предметное стекло и высушивают на воздухе. С пятен крови на предметах, не впитывающих жидкость (металл, стекло, пластмасса и др.), делают соскобы, которые затем обрабатывают таким же образом.

При исследовании волос (см.) корень волоса помещают на предметное стекло и добавляют 10—25% уксусную к-ту. После набухания отделяют и измельчают волосяной фолликул, удаляя остальные части волоса.

Из кусочков тканей и органов, при необходимости предварительно выдержав их до набухания в уксусной к-те соответствующей концентрации или в физиол, р-ре, готовят гистологические препараты, мазки или препараты-отпечатки. Следы-наложения клеток, тканей или органов на орудиях травмы смывают физиол, р-ром, одновременно соскабливая их. Мелкие кусочки тканей, встречающиеся в таких следах, измельчают препаровальными иглами. Смывы-соскобы помещают в пробирки, центрифугируют, из осадка готовят гистологические препараты. Исследование препаратов целесообразно начинать с выявления Y-хроматина, т. к. при его отсутствии те же препараты могут быть снова использованы для выявления X-хроматина. При исследовании учитывают только достаточно хорошо сохранившиеся неповрежденные ядра клеток. При анализе следов крови Y-хроматин определяют в ядрах лимфоцитов, т. к. в нейтрофилах Y-хроматин в препаратах из следов крови мужчин может не выявляться.

При отсутствии повышенной влажности Половой хроматин может длительно сохраняться в высохших следах, а также в клетках фолликула вырванного волоса. Высокая температура (выше 150°) разрушает ядра клеток и П. х. Значительная влажность в течение нескольких суток также приводит к разрушению клеток, что делает невозможным выявление полового хроматина. Т. к. условия, в к-рых находятся следы, могут последовательно меняться, решающее значение для установления пригодности следов крови, слюны и т. д. для определения П. х. имеет состояние обнаруживаемых в них клеток и их ядер. В клетках высохших кусочков тканей, не подвергающихся действию влаги, П. х. сохраняется длительное время. В целых трупах и в их крупных частях в процессе аутолиза и гниения в течение нескольких суток происходит деструкция клеточных ядер. В обгоревших трупах половой хроматин нек-рое время может сохраняться в клетках глубоко расположенных органов и тканей.

При выявлении небольшого числа клеток, сохранивших ядра, исследуемых на Половой хроматин, с целью установления статистической достоверности результатов используют различные математические методы анализа, учитывающие как общее число обнаруженных клеток, так и число клеток. содержащих X- или Y-хроматин.

Библиография: Давиденкова Е. Ф., Берлинская Д. К. и Тысячнюк С. Ф. Клинические синдромы при аномалиях половых хромосом, Л., 1973; Захаров А. Ф. Хромосомы человека, М., 1977; Капустин А. В. Судебно-медицинская диагностика пола по половым различиям в клетках, М., 1969; Лабораторные и специальные методы исследования в судебной медицине, под ред. В. И. Пашковой и В. В. Томилина, с. 157, М., 1975; Любинская С. И. и Антонова С. Н. Исследование Y-хроматина в следах крови, Суд.-мед. экспертиза, т. 18, № 3, с. 17, 1975; Основы цитогенетики человека, под ред. A. А. Прокофьевой-Бельговской, М., 1969; Methods in human cytogenetics, ed. by H. G. Schwarzacher a. U. Wolf, p. 207, B. а. о., 1974; The sex chromatin, ed. by K. L. Moore, Philadelphia — L., 1966.

Кариотип некоторых биологических видов

Большинство видов организмов обладает характерным и постоянным набором хромосом. Количество диплоидных хромосом разнится от организма к организму:

Количество хромосом в кариотипе некоторых приматов
Организм Латинскоенаименование Числохромосом Примечания
Лемур серый Hapalemur griseus 54—58 Мадагаскар. Лемуровые
Лемуры обыкновенные Lemur 44—60 Мадагаскар. 44, 46, 48, 52, 56, 58, 60
Лемур большой крысиный Cheirogaleus major 66 Мадагаскар. Карликовые лемуры
Лемуры мышиные Mycrocebus 66 Мадагаскар
Лори тонкие Loris 62 Ю. Индия, Цейлон. Лориевые
Лори толстые Nycticebus 50 Ю. Азия. Лориевые
Долгопят западный Tarsius bancanus 80 Суматра, Калимантан. Долгопяты
Капуцин обыкновенныйКапуцин-фавн Cebus capucinusCebus apella 54 Ю. Америка. Капуцины
Игрунка обыкновеннаяИгрунка желтоногая Callithrix jacchusCallithrix flaviceps 46 Бразилия. Обыкновенные игрунки
Макаки Macaca 42 Азия, С. Африка
Павиан чёрный Cynopithecus niger 42 о-в Сулавеси. Макаки
Мартышки Cercopithecus 54—72 Африка. 54, 58, 60, 62, 66, 68, 70, 72
Орангутаны Pongo 48 Суматра, Калимантан
Шимпанзе Pan 48 Африка
Гориллы Gorilla 48 Африка
Сиаманги Symphalangus 50 Ю. Азия
Гиббон Hylobates 44 Ю. Азия
Человек Homo sapiens 46 Убиквитарно по всей суше
Количество хромосом в кариотипе некоторых домашних животных и хозяйственных растений
Организм Латинскоенаименование Числохромосом Примечания
Собака Canis lupus familiaris 78 76 аутосом, 2 половые хромосомы
Кошка Felis catus 38
Корова Bos primigenius 60
Коза домашняя Capra aegagrus hircus 60
Овца Ovis aries 54
Осёл Equus asinus 62
Лошадь Equus ferus caballus 64
Мул Mulus 63 Гибрид осла и кобылы. Стерилен.
Свиньи Suidae 38
Кролики Leporidae 44
Курица Gallus gallus domesticus 78
Индейки Meleagris 82
Кукуруза Zea mays 20
Овёс Avena sativa 42 Это гексаплоид с 2n=6x=42. Также культивируют диплоиды и тетраплоиды.
Пшеница мягкая Triticum aestivum 42 Этот вид является гексаплоидным с 2n=6x=42. Твёрдая пшеница Triticum turgidum var. durum является тетраплоидом 2n=4x=28.
Рожь Secale cereale 14
Рис посевной Oryza sativa 24
Ячмень обыкновенный Hordeum vulgare 14
Ананас Ananas comosus 50
Люцерна посевная Medicago sativa 32 Культивируемая люцерна является тетраплоидной с 2n=4x=32, дикорастущие формы имеют 2n=16.
Бобовые Phaseolus sp. 22 Все виды этого рода имеют одинаковое число хромосом, включая P. vulgaris, P. coccineus, P. acutifolis и P. lunatus.
Горох посевной Pisum sativum 14
Картофель Solanum tuberosum 48 Это тетраплоид; дикие формы чаще имеют 2n=24.
Табак Nicotiana tabacum 48 Культурный вид тетраплоидный.
Редис Raphanus sativus 18
Капуста огородная Brassica oleracea 18 Брокколи, капуста, кольраби, брюссельская капуста и цветная капуста относятся к одному виду и имеют одинаковое число хромосом.
Хлопчатник Gossypium hirsutum 52 2n=4x; Культивируемый хлопчатник возник в результате аллотетраплоидизации.
Количество хромосом в кариотипе некоторых модельных организмов
Организм Латинскоенаименование Числохромосом Примечания
Домовая мышь Mus musculus 40
Крысы Rattus 42
Дрожжи Saccharomyces cerevisiae 32
Муха-дрозофила Drosophila melanogaster 8 6 аутосом, 2 половые
Нематода Caenorhabditis elegans 11, 12 5 пар аутосом и пара половых Х-хромосом у гермафородитов, 5 пар аутосом и одна Х-хромосома у самцов
Резуховидка Таля Arabidópsis thaliána 10

«Почему так долго? Мне надо срочно!» Или вся правда об анализах на кариотип

Наталья Опарина

20.03.201516:55

Врач-цитогенетик

Дорогие друзья! Сегодня я попытаюсь ответить на самый задаваемый вопрос: почему так долго делается анализ кариотипа? Начнем, как говорится, ab ovo, т.е. «от яйца»Всю процедуру кариотипирования можно разбить на 2 этапа.Этап первый: технический — приготовление препаратов для анализаДавайте разберем подробнее, что же это такое. Итак, из курса биологии вы знаете, что хромосомы расположены в ядре клетки. Любые клетки любых тканей организма, имеющие ядро, содержат хромосомы. Однако, в медицинской практике, набор тканей, используемых для получения хромосом, ограничен. Главным требованием в этом вопросе является простота получения образца для исследований. И с этой позиции кровь является идеальным кандидатом. Забор венозной крови легко осуществить в любом медицинском учреждении, это практически безболезненная и быстрая по времени процедура. Взятую в пробирку порцию крови легко транспортировать в лабораторию и т. д. Но есть и минусы. Дело в том, что не все клетки крови содержат ядро.  Эритроциты, например, не содержат и для анализа не годятся. Самые многочисленные ядросодержащие клетки, это лейкоциты и лимфоциты. Но и это еще не все подводные камни. Лейкоциты и лимфоциты, циркулирующие в крови взрослого здорового человека, называются «зрелыми» и не способны делиться (размножаться). А нам для анализа нужно получить не просто делящиеся клетки, но и остановить процесс деления строго на определенной стадии, называемой «метафаза». Что бы этого добиться, мы, цитогенетики, прибегаем к целому ряду ухищрений: стимулируем клетки специальным веществом, под воздействием которого они «превращаются» в «незрелые» или бласты и начинают делиться. Кроме того, помещаем клетки в специальную культуральную среду, которая содержит все необходимые элементы для жизнедеятельности, ведь, извлеченные из организма клетки крови должны чем-то питаться, для того, чтобы не только жить, но и размножаться. Полный клеточный цикл (все стадии деления) длится 24 часа. Для того, чтобы врач смог приступить к анализу хромосом, необходимо, что бы делящихся клеток было как можно больше, поэтому для получения качественных препаратов хромосом клетки культивируют (выращивают) 72 часа=3 клеточных цикла=3 суток. Но и это еще не все! Теперь нужно сделать так, чтобы хромосомы стали доступны для исследования, т.е. извлечь их из ядра, поместить на стекло, да еще добиться того, что бы они с этого стекла не соскользнули. Весь этот процесс называется обработкой препарата и длиться около 5 часов. А дальше хромосомы нужно визуализировать, покрасить специальными биологическими красителями. Но вот беда-свежие, только что полученные препараты для этого не годятся. Их нужно «состарить». Т.е. 2-3 суток стекла просто лежат и ждут своей очереди. Этот этап чрезвычайно важен, так как позволяет получить хорошую окраску хромосом, без получения которой анализ невозможен! Итого мы имеем: 3 суток инкубация + 5 часов (рабочий день) фиксация + 3 суток подготовка к окрашиванию = 7 дней или целая неделя. Столько времени уходит на технический этап и то при условии, что все пройдет без сбоев и ничего не придется переделывать. А дальше наступает второй этап: аналитический — исследование хромосом , о котором мы поговорим в следующий раз.Если у вас возникают вопросы-спрашивайте, я постараюсь на них ответить. Наиболее часто задаваемые вопросы будут служить темами для следующих бесед.Что означают полоски на хромосомах? Продолжаем обсуждать кариотип!

Показания для проведения генетического скрининга бесплодных мужчин

Рекомендации по генетическому скринингу при бесплодии сосредоточены на оценке трех параметров: 

  • кариотипа;
  • микроделеции Y-хромосомы;
  • мутации, ответственной за муковисцидоз.

Получит ли мужчина с пониженной фертильностью пользу от генетического тестирования, зависит от этиологии мужского бесплодия и степени фертильности. Тщательное собеседование и всестороннее физическое обследование в сочетании с дополнительными тестами: спермограммой, гормональными тестами, биопсией яичка, позволяют определить пациента в соответствующую диагностическую категорию.

Спермограмма

Например, если в репродуктивном анамнезе у мужчины тяжелая олиго- или азооспермия и обнаруживаются факты, указывающие на возможную причину нарушения сперматогенеза, например, лечение методом химиотерапии, применение анаболических стероидов, двустороннее воспаление яичек, паротит, мукозит с последующей атрофией, генетическое тестирование не требуется. 

Влияют ли оральные пищевые добавки с антиоксидантами и растительные препараты на мужскую фертильность? Стоит ли их рассматривать как фактор в диагностике и использовать в лечении?

Учеными получено множество данных, подтверждающих, что окислительный стресс играет ключевую роль в нарушении функции сперматозоидов и приводит к бесплодию. Таким образом, использование антиоксидантов при лечении бесплодных мужчин должно улучшать качество спермы и повышать фертильность. 

Тем не менее, врачи задаются вопросом: есть ли научные доказательства, подтверждающие это? Чтобы ответить, ученые рассмотрели результаты крупных исследований и сообщения, включающие факты лечения бесплодия травами. 

Оценивались порядка пятидесяти систематических обзоров, освещающих использование антиоксидантов. Исходные данные оказались слабыми. Процент беременностей был указан только в 7 из 48 исследований, а рождение живых детей учитывалось только в 4-х публикациях. 

Специалисты пришли к выводу, что из-за отсутствия данных о проценте живорождений детей и клинически подтвержденных беременностей во всех клинических исследованиях, однозначный вывод относительно обоснованности применения антиоксидантов у бесплодных мужчин сделать нельзя. 

По их мнению, антиоксидантные добавки у бесплодных мужчин могут увеличить рождаемость жизнеспособных детей, но достоверность этого вывода довольно низкая. Для подтверждения полученных результатов необходимо провести хорошо спланированные рандомизированные и плацебо-контролируемые исследования с участием большого числа участников.  

Пищевые добавки

Еще меньшее количество исследований было проанализировано с точки зрения использования лекарственных средств растительного происхождения (препараты Y-virilin и Addyzoa, шафран). Две трети результатов показали некоторое улучшение параметров спермы, и в одном случае было выявлено положительное влияние на плотность мембраны сперматозоидов. 

Два исследования после лечения травами показали улучшение целостности ДНК спермы. Но при этом только одно из трех исследований выявило положительное влияние лечения травами на показатели беременности. Неблагоприятные реакции, большинство из которых были легкими или умеренными, были зарегистрированы в 16,6% исследований. Большое количество пациентов получили неблагоприятные гематологические реакции при лечении препаратом, содержащим шафран (исследования Safarinejada).

Анализ приведенных выше данных позволяет сделать четкий вывод: большинство доступных исследований по применению антиоксидантов и фитотерапии в лечении мужского бесплодия характеризуется низким методологическим качеством. Кроме того, разнообразный характер отдельных исследований затрудняет проведение метаанализа. Эта трудность еще более усугубляется отсутствием стандартизации методов измерения окислительного стресса, антиоксидантной способности и повреждения ДНК. 

Кроме того, многие из исследователей не установили четких критериев для выбора подгрупп, например, подтвержденного присутствия высокоактивных видов кислорода, уровня повреждения ДНК или сниженной антиоксидантной способности. 

Учитывая это, можно предположить, что пероральная антиоксидантная терапия может улучшить параметры спермы, связанные с окислительными процессами либо за счет снижения окислительного стресса, либо за счет увеличения общего антиоксидантного потенциала. В некоторых случаях положительный эффект такого лечения выражается в улучшении параметров спермы, чаще всего подвижности сперматозоидов. Но данные по этим вопросам недостоверны.

Показания для кариотипирования

В идеале, кариотипирование необходимо пройти всем супругам, желающим стать родителями, даже если показания для проведения анализа отсутствуют.

Многие наследственные заболевания, которыми страдали прадедушки и прабабушки могут не проявляться у человека, а кариотипирование поможет выявить патологическую хромосому и рассчитать риск рождения ребенка с патологией.

К обязательным показаниям для проведения процедуры относятся:

  • возраст будущих родителей (35 лет и старше, даже если этому пункту отвечает только один из супругов);
  • бесплодие неустановленного происхождения;
  • многократные и безуспешные попытки искусственного оплодотворения (ЭКО);
  • наличие наследственного заболевания у одного из супругов;
  • расстройства гормонального баланса у женщины;
  • нарушение образования сперматозоидов (сперматогенеза) с неустановленной причиной;
  • неблагоприятное экологическое окружение;
  • контакт с химическими веществами и облучающее воздействие;
  • воздействие вредных факторов на женщину, особенно в недавнем прошлом: курение, алкоголь, наркотики, прием лекарственных препаратов;
  • наличие самопроизвольного прерывания беременности (выкидыши, преждевременные роды, замершие беременности);
  • близкородственные браки;
  • наличие ребенка/детей с хромосомными патологиями или врожденными пороками развития.

Процедуру исследования кариотипов супругов необходимо провести еще на этапе планирования беременности. Но не исключается возможность кариотипирования в том случае, если женщина беременна. Тогда проводится кариотипирование не только супругов, но и будущего ребенка (пренатальное кариотипирование).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector